如何培養(yǎng)學(xué)生的解題能力(二)
來源:數(shù)學(xué)專業(yè)網(wǎng) 2008-02-01 10:37:33

二、多向探索,培養(yǎng)解題的靈活性
求異思維是一種創(chuàng)造性思維。它要求學(xué)生憑借自己的知識(shí)水平能力,對(duì)某一問題從不同的角度,不同的方位去思考,創(chuàng)造性地解決問題。而小學(xué)生的思維是以具體形象思維為主,容易產(chǎn)生消極的思維定勢(shì),造成一些機(jī)械思維模式,干擾解題的準(zhǔn)確性和靈活性。有的學(xué)生常常將題中的兩個(gè)數(shù)據(jù)隨意連接,而忽視其邏輯意義。如“小方和小圓各有同樣多的水果糖,小方吃了5粒,小圓吃了6粒,剩下的誰多?”由于受數(shù)值大小這一表象的干擾,學(xué)生的思維定勢(shì)集中在“6>5”上,容易誤判斷為“小圓剩下的多”。為了排除學(xué)生類似的消極思維定勢(shì)的干擾,在解題中,要努力創(chuàng)造條件,引導(dǎo)學(xué)生從各個(gè)角度去分析思考問題,發(fā)展學(xué)生的求異思維,使其創(chuàng)造性地解決問題。通常運(yùn)用的方法有“一題多問”、“一題多解”和“一題多變”。
1.一題多問。
同一道題,同樣的條件,從不同的角度出發(fā),可以提出不同的問題。如解答“五一班有學(xué)生45人。女生占4/9,女生有多少人?”這本來是一道很簡單的題目。教學(xué)中,老師往往會(huì)因?qū)W生很容易解答,而一晃而過,忽視發(fā)散思維的訓(xùn)練。對(duì)于這樣的題型,老師要執(zhí)意求新,變換提出新的問題。如再提出如下問題:(1)男生有多少人?(2)全班有多少人?(3)男生比女生多多少人?(4)男生是女生的幾倍?(5)女生是男生的幾分之幾?等等。這樣,可以起到“以一當(dāng)十”的教學(xué)效果。像同一道題,老師還可以從分析上多提問,從解法上多提問,從檢驗(yàn)上多提問,進(jìn)行多問啟思訓(xùn)練,培養(yǎng)學(xué)習(xí)思維的靈活性。
2.一題多解。
在解題時(shí),要經(jīng)常注意引導(dǎo)學(xué)生從不同的方面,探求解題途徑,以求最佳解法。
例如“某村計(jì)劃修一條長150米的路,前3天完成了計(jì)劃的20%,照這樣計(jì)算,完成這條路還需多少天?”首先老師要學(xué)生用多種方法解。在學(xué)生沒有學(xué)習(xí)工程問題時(shí),解法一般集中在以下三種上:①(150-150×20%)÷(150×20%÷3)=12(天);②150÷(150×20%÷3)-3=12(天);③150×(1-20%)÷(150×20%÷3)=12(天)。
針對(duì)這些解法,老師要善于引導(dǎo)學(xué)生比較三種方法的異同點(diǎn),總結(jié)出“三種方法中都運(yùn)用了全程150米”這一條件的共性。針對(duì)這一共性,老師可打破思維定勢(shì),啟迪學(xué)生的新思維:“假如把150米當(dāng)作一條路(用1來表示),還可以怎樣解答?”這一點(diǎn)撥,學(xué)生很容易發(fā)現(xiàn)如下解法:④3×[(1-20%)÷20%]=12(天);⑤1÷(20%÷3)-3=12(天);⑥3÷20%-3=12(天)。
綜上六種解法,顯然后三種解法(尤其是解法⑥),列式簡潔,想象豐富,充分可以顯示學(xué)生思維的靈活性。
3.一題多變。
小學(xué)生解題時(shí),往往受解題動(dòng)機(jī)的影響,因局部感知而干擾整體的認(rèn)識(shí)。例如:“某商廈共有6層,每兩層間的板梯長5米,從1樓到6樓共要走多少米?”往往由于“每兩層5米”和“6層”與學(xué)生的解題動(dòng)機(jī)發(fā)生共鳴,忽視了“6層只有5段間距”這一特點(diǎn),而容易得出“5×6”的錯(cuò)解。要消除類似的干擾,就必須進(jìn)行一些一題多變的訓(xùn)練。
針對(duì)解題模式的干擾進(jìn)行變題訓(xùn)練。如學(xué)生學(xué)習(xí)了工程問題后,求合做工作時(shí)間,容易形成這樣一種解題模式“1÷(1/A+1/B)”。我們可將條件中的時(shí)間改變成分?jǐn)?shù)形式。如“一項(xiàng)工作,甲獨(dú)做1/2小時(shí)完成,乙獨(dú)做1/4小時(shí)完成,如兩人合做要多少小時(shí)完成?”如老師不提醒,學(xué)生絕大多數(shù)會(huì)把“1/2小時(shí)”和“1/4小時(shí)”當(dāng)作工效,仍然列出算式“1÷(1/2+1/4)”來解答(實(shí)踐統(tǒng)計(jì),第1次這樣的錯(cuò)誤率在75%以上)。又如學(xué)生學(xué)過等分除法應(yīng)用題后,往往見“分成幾份”就“用除法計(jì)算”。在學(xué)生掌握等份除法計(jì)算方法后,也要注意變題訓(xùn)練。如設(shè)計(jì)類似題“6粒水果糖分成3份,最少的1份是多少粒?”可淡化消極的“6÷3”思維定勢(shì)的干擾。因?yàn)椤埃丁拢场庇?jì)算錯(cuò)了,其實(shí)最少的1份是1粒(題中并沒有要求平均分)。
通常,教學(xué)中的變條件、變問題、條件和問題的互換等,都是一題多變的好形式,但是,變題訓(xùn)練要掌握一個(gè)原則,就是要在學(xué)生較牢固的掌握法則、公式的基礎(chǔ)上,進(jìn)行變題形練。否則,將淡化思維定勢(shì)的積極作用,不利于學(xué)生牢固地掌握知識(shí)。
相關(guān)文章
- 小學(xué)1-6年級(jí)作文素材大全
- 全國小學(xué)升初中語數(shù)英三科試題匯總
- 小學(xué)1-6年級(jí)數(shù)學(xué)天天練
- 小學(xué)1-6年級(jí)奧數(shù)類型例題講解整理匯總
- 小學(xué)1-6年級(jí)奧數(shù)練習(xí)題整理匯總
- 小學(xué)1-6年級(jí)奧數(shù)知識(shí)點(diǎn)匯總
- 小學(xué)1-6年級(jí)語數(shù)英教案匯總
- 小學(xué)語數(shù)英試題資料大全
- 小學(xué)1-6年級(jí)語數(shù)英期末試題整理匯總
- 小學(xué)1-6年級(jí)語數(shù)英期中試題整理匯總
- 小學(xué)1-6年語數(shù)英單元試題整理匯總