例8 如右圖,兩個(gè)長(zhǎng)方形疊放在一起,小長(zhǎng)形的寬是2,A點(diǎn)是大長(zhǎng)方形一邊的中點(diǎn),并且三角形ABC是等腰直角三角形,那么圖中陰影部分的總面積是多少?
解:為了說(shuō)明的方便,在圖上標(biāo)上英文字母 D,E,F(xiàn),G.
三角形ABC的面積=2×2÷2=2.
三角形ABC,ADE,EFG都是等腰直角三角形.
三角形ABC的斜邊,與三角形ADE的直角邊一樣長(zhǎng),因此三角形 ADE面積=ABC面積×2=4.
三角形EFG的斜邊與三角形ABC的直角邊一樣長(zhǎng).因此三角形EFG面積=ABC面積÷2=1.
陰影部分的總面積是 4+1=5.
例9 如右圖,已知一個(gè)四邊形ABCD的兩條邊的長(zhǎng)度AD=7,BC=3,三個(gè)角的度數(shù):角 B和D是直角,角A是45°.求這個(gè)四邊形的面積.
解:這個(gè)圖形可以看作是一個(gè)等腰直角三角形ADE,切掉一個(gè)等腰直角三角形BCE.
因?yàn)?/font>
A是45°,角D是90°,角E是
180°-45°-90°= 45°,
所以ADE是等腰直角三角形,BCE也是等腰直角三角形.
四邊形ABCD的面積,是這兩個(gè)等腰直角三角形面積之差,即
7×7÷2-3×3÷2=20.
這是1994小學(xué)數(shù)學(xué)奧林匹克決賽試題.原來(lái)試題圖上并沒(méi)有畫出虛線三角形.參賽同學(xué)是不大容易想到把圖形補(bǔ)全成為等腰直角三角形.因此做對(duì)這道題的人數(shù)不多.但是有一些同學(xué),用直線AC把圖形分成兩個(gè)直角三角形,并認(rèn)為這兩個(gè)直角三角形是一樣的,這就大錯(cuò)特錯(cuò)了.這樣做,角 A是 45°,這一條件還用得上嗎?圖形上線段相等,兩個(gè)三角形相等,是不能靠眼睛來(lái)測(cè)定的,必須從幾何學(xué)上找出根據(jù),小學(xué)同學(xué)尚未學(xué)過(guò)幾何,千萬(wàn)不要隨便對(duì)圖形下結(jié)論.我們應(yīng)該從題目中已有的條件作為思考的線索.有45°和直角,你應(yīng)首先考慮等腰直角三角形.
現(xiàn)在我們轉(zhuǎn)向正方形的問(wèn)題.
例10 在右圖 11×15的長(zhǎng)方形內(nèi),有四對(duì)正方形(標(biāo)號(hào)相同的兩個(gè)正方形為一對(duì)),每一對(duì)是相同的正方形,那么中間這個(gè)小正方形(陰影部分)面積是多少?
解:長(zhǎng)方形的寬,是“一”與“二”兩個(gè)正方形的邊長(zhǎng)之和,長(zhǎng)方形的長(zhǎng),是“一”、“三”與“二”三個(gè)正方形的邊長(zhǎng)之和.
長(zhǎng)-寬 =15-11=4
是“三”正方形的邊長(zhǎng).
寬又是兩個(gè)“三”正方形與中間小正方形的邊長(zhǎng)之和,因此
中間小正方形邊長(zhǎng)=11-4×2=3.
中間小正方形面積=3×3= 9.
如果把這一圖形,畫在方格紙上,就一目了然了.